—xploring System
Calls with Strace

by Mike Hamrick

I’m Mike Hamrick. In my career as a programmer, sysadmin, and DBA I've used strace quite a lot to learn what programs are doing under the hood. It’s often the first tool
| reach for when | really want to know why programs aren’t behaving like | expect them to. With strace the opaque becomes transparent, and that transparency has
helped me solve many thorny systems problems. | hope by the end of this talk you have a good idea of how strace can help you solve problems in systems that you

manage.
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Strace is a program that lets you see what system calls a program is making. What are system calls? System calls are the interface that the operating system exposes to
programmers. Often times you don’t call the system calls directly. You, the programmer, instead call your programming language’s library functions, which in turn make
system calls on your behalf.



What are system calls?

#include <stdio.h> Library Functions
#include <stdlib.h>

int main(void)

printf("Hello world!\n"); ——»
exit(42); ~
}
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This is the canonical C ‘hello world’ program. It prints ‘hello world’ to the terminal and then exits back to the operating system with a return value of 42, well because 42.
Almost all C programs use the standard C runtime library, in this case libc.so.6.



What are system calls?

#include <stdio.h> i i
#include <stdlib.h> lerary Functions

int main(void) -
{
printf("Hello world!\n"); ——»

exit(42); ~
}

System Calls

7~ Kernel
#1/usr/bin/php libc.so.6
<?php
printf("Hello world!\n"); ——
exit(42); >
?>

Kernel
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Here’s a PHP program that does the same thing as the C program. Many interpreted languages like PHP have library functions that share the same name as the C library
functions. That’s because C is the lingua franca of UNIX. Many interpreted languages are both written in C and inspired by it.



What are system calls?

#include <stdio.h> i i
#include <stdlib.h> lerary Functions

int main(void)

printf("Hello world!\n"); ——»
exit(42); ! System Calls
} ppamm——
Kernel
#1/usr/bin/php libc.so.6 \
<?php | \
printf("Hello world!\n"); —— ‘
exit(42); —>
?>

#!/usr/bin/perl libc.so.s
printf("Hello world!\n"); ——»
exit(42);

>
»

Kernel

System Calls
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Perl is another example of an interpreted language that shares some of the same library functions as C. Perl has many, many library functions that have pretty direct
mappings to the C library functions.



What are system calls?

#include <stdio.h> Library Functions
#include <stdlib.h>

int main(void)

printf("Hello world!\n"); ——»

Pxit(42): 2 System Calls
} s
Kernel \
#!/usr/bin/php libc.so.6 \
<?php | \
printf("Hello world!\n"); —» \
exit(42); —»
?>
\ |
#!/usr/bin/perl libc.so.s /
pr‘%nt-F( Hello world!\n"); ——> Kernel
exit(42); >
#!/usr/bin/ruby libc.s0.6
printf("Hello world!\n") — 8 —» SyStem Calls
exit(42) >

»

N Library Functions

Even a relatively new programming language like Ruby adopts some of the function names and methodologies of the C runtime library into its libraries.



What are system calls?

#include <stdio.h> i i
#include <stdlib.h> L|brary Functions

int main(void) g —

{ libc.so.q/f’f N
printf("Hello world!\n"); ——» \\
exit(42); > y. SyStem Calls

} y ——

/ Kernel

#!/usr/bin/php libc.s0.6

<?php
printf("Hello world!\n"); ——
exit(42); >

?>

#!/usr/bin/perl libc.so.6

printf("Hello world!\n"); —— Kerél

exit(42); >
#!/usr/bin/ruby libc.so0.6

printf("Hello world!\n") — System Calls
exit(42) >

Library Functions

$ for lang in {php,perl,ruby}; do ldd /usr/bin/$lang | grep libc.so; done
libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007fd01fbe3000)
libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007f5f3aac6000)
libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007f6851fe8000)

And in fact here on the bottom you can see that all three of these interpreted languages have a library dependency on libc6. It’s possible that in some of these languages
calls to their library functions are simply wrappers around the same functions in the C library.



What are system calls?

#include <stdio.h> i i
#include <stdlib.h> lerary Functions

int main(void) i
{ libc.so.6 "

printf("Hello world!\n"); ——> " gystem Calls  “\yipc.co.6
exit(42); = . .S0.
} ’ i y . —— write(1, "Hello world\n", 12)
, Kernel S exit_group(42)
#!/usr/bin/php libc.so.6/
<?php [
printf("Hello world!\n"); —— '
exit(42); >
?>

#!/usr/bin/perl libc.so.6
printf("Hello world!\n"); ——

Kernel

exit(42); >
#!/usr/bin/ruby libc.so0.6

printf("Hello world!\n") — System Calls
exit(42) >

Library Functions

$ for lang in {php,perl,ruby}; do ldd /usr/bin/$lang | grep libc.so; done
libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007fd01fbe3000)
libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007f5f3aac6000)
libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007f6851fe8000)

Now each one of the library calls in these examples eventually makes a lower-level system call do do the actual work. The printf library routine eventually calls the write()
system call to ouput ‘hello world’ to the hardware — the terminal in this case. The exit function eventually maps to the exit_group() system call, which causes every
thread in a program to exit.



System Calls Without Libraries
// helloasm.c
char *buf = "Hello world!\n";
void _start(void)
{
asm(
"mov $1,%rax;"
"mov $1,%rdi;"
"mov buf,%rsi;"
"mov $13,%rdx;"
"syscall™
)
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall™
)

This example shows how you can make system calls directly without involving the C runtime library. This assembly code might look daunting at first, but don’t worry, this
is easy. You might remember that in C program execution begins with the main() function, but when the operating system runs a program, looks for a _start label, which is
usually provided by the C runtime library. Since we’re not using the C runtime library we use _start() and not main().



System Calls Without Libraries
// helloasm.c
char *buf = "Hello world!\n";
void _start(void)
{
asm(
"mov $1,%rax;" +——— write(
"mov $1,%rdi;"
"mov buf,%rsi;"
"mov $13,%rdx;"
"syscall™
)
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall™
)s
}
%rax | System call %rdi %rsi %rdx %r10 %r8 %r9
0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf size_t count
2 sys_open i;resr::r:aer int flags int mode
3 sys_close unsigned int fd

System calls are referenced by their numbers. The first four system calls are the foundational ones, read, write, open, and close. You can do quite a lot with just these
system calls. System calls are all executed by loading values into machine registers. The rax register (also called the accumulator) is where you indicate which system
call you’d like to make. A system call can have up to six arguments which are placed in rdi, rsi, rdx, r8, r9, r10. It’s worth noting that these are 64-bit system calls and
registers we’re using. In the 32 bit world this changes. Here we load ‘write’ (system call #1) into RAX.



System Calls Without Libraries

// helloasm.c stdin =0
char *buf = "Hello world!\n"; stdout = 1
void _start(void) stderr = 2
{
asm(
"mov $1,%rax;" +——— write(
"mov $1,%rdi;" e——— write(1,

"mov buf,%rsi;"
"mov $13,%rdx;"

"syscall™
)
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall™
)
%rax | System call %rdi %rsi %rdx %r10 %r8 %r9
0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf size_t count
2 sys_open e int flags int mode
ys-oP *filename g
3 sys_close unsigned int fd

The first argument to write is the file descriptor that you want to write to. UNIX uses the file abstraction to model a lot of different things. A file descriptor is a number that
can refer to an actual file, a terminal, a random number generator, a printer, a joystick, a network socket, or some giant industrial robot. Traditionally the first three file

descriptors (0, 1, and 2) are mapped to your programs standard input, standard output, and standard error. In our case we want to write so standard out, so we load a 1
into the RDI register.



System Calls Without Libraries

// helloasm.c stdin =0
char *buf = "Hello world!\n"; stdout = 1
void _start(void) stderr = 2
{
asm(
"mov $1,%rax;" +——— write(
"mov $1,%rdi;" «—— write(1,

"mov buf,%rsi;" <———— write(1, buf
"mov $13,%rdx;"

"syscall™
)
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall™
)
%rax | System call %rdi %rsi %rdx %r10 %r8 %r9
0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf size_t count
2 sys_open e int flags int mode
ys-oP *filename &
3 sys_close unsigned int fd

The second argument to the write system call is a pointer to the buffer of the data that we want to write. Now at the top of our program we’ve declared ‘buf’ as a pointer

to the “Hello world!” string, so now we load that pointer into the RSI register. We could have used a string literal in place of ‘buf’ here, but | wanted to make it explicit that
we were loading a pointer into RSI.



System Calls Without Libraries

// helloasm.c stdin =0
char *buf = "Hello world!\n"; stdout = 1
void _start(void) stderr = 2
{
asm(
"mov $1,%rax;" +——— write(
"mov $1,%rdi;" «—— write(1,

"mov buf,%rsi;" <«———write(1, buf
"mov $13,%rdx;" <«—— write(1, buf, 13

"syscall™
)
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall™
)s
%rax | System call %rdi %rsi %rdx %r10 %r8 %r9
0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf size_t count
const char . ;
2 sys_open *filename int flags int mode
3 sys_close unsigned int fd

The last argument to the write() system call is the number of bytes that we’re writing to the file descriptor. ‘Hello’ and ‘world’ are both 5 bytes, so that’s 10, the space
makes it 11, the bang makes it 12, and the newline character ends us up at 13 bytes.



System Calls Without Libraries

// helloasm.c stdin =0
char *buf = "Hello world!\n"; stdout = 1
void _start(void) stderr = 2
{
asm(
"mov $1,%rax;" +——— write(
"mov $1,%rdi;" «—— write(1,

"mov buf,%rsi;" <«———write(1, buf
"mov $13,%rdx;" «——— write(1, buf, 13

syscall +«———— write(1, buf, 13)
)
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall™
)s
%rax | System call %rdi %rsi %rdx %r10 %r8 %r9
0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf size_t count
const char . ;
2 sys_open *filename int flags int mode
3 sys_close unsigned int fd

Now on the X86_64 CPU, which just about everything uses these days, you have a dedicated instruction called ‘syscall’ that executes the system call and takes you on
the journey from userland into the kernel. In the old 32-bit days you used to call interrupt 0x80 to execute a system call after setting everything up. In the old-old days in
MS-DOS you might remember INT 0x21 was the instruction you’d use to make an MS-DOS system call. The modern SYSCALL instruction is faster, and bypasses the
chips interrupt handler system. The return value for the syscall is saved in RAX, and when you return the state of all your registers and stack is exactly as it was before
you made the syscall. The fact that you can make a system call just by loading some values into registers and not having to fidddle with stack frames makes them really
easy to call in many uncertain circumstances.



System Calls Without Libraries

// helloasm.c stdin =0
char *buf = "Hello world!\n"; stdout = 1
void _start(void) stderr = 2
{
asm(
"mov $1,%rax;" +——— write(
"mov $1,%rdi;" «—— write(1,

"mov buf,%rsi;" <«———write(1, buf
"mov $13,%rdx;" «——— write(1, buf, 13

syscall +«—— write(1, buf, 13)
)
asm(
"mov $231,%rax;" «——— exit_group(
"mov $42,%rdi;"
"syscall™
)s
%rax | System call %rdi %rsi %rdx %r10 %r8 %r9
0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf size_t count
2 sys_open e int flags int mode
ys-oP *filename &
3 sys_close unsigned int fd
231 sys_exit_group int error_code ‘ ‘ ‘ ‘

Now that we’ve outputted our ‘Hello World’ string it’s time to exit. We’re going to call the exit_group system call, which is #231, which we load into the RAX register.
There is also just a plain exit() system call (60) but modern systems often use the thread aware exit_group syscall instead.



System Calls Without Libraries

// helloasm.c stdin =0
char *buf = "Hello world!\n"; stdout = 1
void _start(void) stderr = 2
{
asm(
"mov $1,%rax;" +——— write(
"mov $1,%rdi;" «—— write(1,

"mov buf,%rsi;" <«———write(1, buf
"mov $13,%rdx;" «——— write(1, buf, 13

syscall +«—— write(1, buf, 13)
)
asm(
"mov $231,%rax;" «—— exit_group(
"mov $42,%rdi;" «——— exit_group(42
"syscall™
)s
%rax | System call %rdi %rsi %rdx %r10 %r8 %r9
0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf size_t count
2 sys_open e int flags int mode
ys-op *filename &
3 sys_close unsigned int fd
231 sys_exit_group int error_code ‘ ‘ ‘ ‘

The exit_group syscall takes a single argument, the error code to return back to the operating system. We load our magic number into the RDI register here.



System Calls Without Libraries
// helloasm.c stdin =0
char *buf = "Hello world!\n"; stdout = 1
void _start(void) stderr = 2
{
asm(
"mov $1,%rax;" +——— write(
"mov $1,%rdi;" «—— write(1,
"mov buf,%rsi;" <«———write(1, buf
"mov $13,%rdx;" «——— write(1, buf, 13
“syscall” +«—— write(1, buf, 13)
)
asm(
"mov $231,%rax;" «—— exit_group(
"mov $42,%rdi;" «——— exit_group(42
"syscall” +«——— exit_group(42)
)s
}
%rax | System call %rdi %rsi %rdx %r10 %r8 %r9
0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf size_t count
2 sys_open iz:z::;aer int flags int mode
3 sys_close unsigned int fd
231 sys_exit_group int error_code ‘ ‘ ‘

Finally we execute the last instruction our program makes in userland. This system call does not return control to the program, it exits back to the OS.




$ gcc -nostdlib -Wall -o helloasm helloasm.c
$ ./helloasm

Hello world!

$ echo $?

42

So now we compile and run our helloasm program. We pass gcc the -nostdlib argument to tell it that this is a stand-alone program and to not link with or initialize the
standard library. Normally the C library initializes itself in the _start function and then calls the program’s main() function to hand control over to you. Because we pass
gcc the -nostdlib argument the operating system will call our _start function straight away when it loads our program.



$ gcc -nostdlib -Wall -o helloasm helloasm.c
$ ./helloasm

Hello world!

$ echo $?

42

$ strace ./helloasm

execve("./helloasm", ["./helloasm"], [/* 21 vars */]) = @
write(1, "Hello world!\n", 13Hello world!

) =13

exit_group(42) =?

+++ exited with 42 +++

So now we’re going to run strace for the first time. The easiest way to run strace is just to pass it a program to run, like we do here. By default strace will write its output
to STDERR. That line in red looks a little bit funny because the output of the helloasm program is being run together with the output from strace.



$ gcc -nostdlib -Wall -o helloasm helloasm.c
$ ./helloasm

Hello world!

$ echo $?

42

$ strace ./helloasm

execve("./helloasm", ["./helloasm"], [/* 21 vars */])
write(1, "Hello world!\n", 13Hello world!

) =13

exit_group(42) =?

+++ exited with 42 +++

1l
()

$ strace ./helloasm > /dev/null

execve("./helloasm", ["./helloasm"], [/* 21 vars */])
write(1l, "Hello world!\n", 13) = 13
exit_group(42) =7?

+++ exited with 42 +++

1]
(W)

We can clean this up a bit by piping the ouptut of helloasm to /dev/null, so we only see strace’s ouput. Strace is doing what its supposed to do, it’s showing you every
system call a program makes with its arguments and return codes. You’ll notice that the two system calls our program made are listed here along with their arguments,
but there is an additional one listed here that we didn’t make, execve, which I'll return to in a moment.



$ gcc -nostdlib -Wall -o helloasm helloasm.c
$ ./helloasm

Hello world!

$ echo $?

42

$ strace ./helloasm

execve("./helloasm", ["./helloasm"], [/* 21 vars */]) = ©
write(1, "Hello world!\n", 13Hello world!

) =13

exit_group(42) =?

+++ exited with 42 +++

$ strace ./helloasm > /dev/null

execve("./helloasm", ["./helloasm"], [/* 21 vars */]) = ©

write(1l, "Hello world!\n", 13)
exit_group(42)
+++ exited with 42 +++

13
?

System calls return values to the program to let the programmer know if the system call was successful or not. In our helloasm program, the number 13 would be stored
in the RAX register to indicate that the write system call successfully wrote 13 bytes to STDOUT. Now we didn’t do anything with this value in our program, because what
are we going to do if we failed to write our ‘Hello world!’ string to the terminal? Would we write another string to the terminal saying we were unable to write ‘Hello world!’
to the terminal’? But this is extremely handy for us admins trying to debug something. We can see the return codes from system calls that the programmer might be
ignoring completely. Earlier | said the exit_group function never returns, so its return code is shown with a question mark.



$ gcc -nostdlib -Wall -o helloasm helloasm.c
$ ./helloasm

Hello world!

$ echo $?

42

$ strace ./helloasm

execve("./helloasm", ["./helloasm"], [/* 21 vars */])
write(1, "Hello world!\n", 13Hello world!

) =13

exit_group(42) =?

+++ exited with 42 +++

1l
()

$ strace ./helloasm > /dev/null

execve("./helloasm", ["./helloasm"], [/* 21 vars */])
write(1l, "Hello world!\n", 13) = 13
exit_group(42) =7?

+++ exited with 42 +++

1]
(W)

%rax ‘ System call ‘ %rdi ‘ %rsi %rdx %r10 %r8 ‘ %r9

const char *const | const char *const
argv[] envp[]

const char

59 sys_execve .
Y- *filename

Ok, so now let’s talk about the execve system call. This system call loads a new program into memory on top of your existing program and then runs it. This system call
is technically made by strace, and not our program, but it shows exactly how strace invoked us. The first argument to execve is the name of the program to execute, the
second and third arguments are an array of strings, denoted in the strace output by square brackets. The second argument to execve (the arg vector) tells helloasm how
it was invoked, and if any arguments were passed to it. We didn’t provide any arguments to helloasm so only the name of the program is passed, this is how helloasm
can learn its program name if it wants to.



$ gcc -nostdlib -Wall -o helloasm helloasm.c
$ ./helloasm

Hello world!

$ echo $?

42

$ strace ./helloasm

execve("./helloasm", ["./helloasm"], [/* 21 vars */])
write(1, "Hello world!\n", 13Hello world!

) =13

exit_group(42) =?

+++ exited with 42 +++

1l
()

$ strace ./helloasm > /dev/null

execve("./helloasm", ["./helloasm"], [/* 21 vars */])
write(1l, "Hello world!\n", 13) = 13
exit_group(42) =7?

+++ exited with 42 +++

1]
(W)

%rax ‘ System call ‘ %rdi ‘ %rsi %rdx %r10 %r8 ‘ %r9

const char *const | const char *const
argv[] envp[]

const char

59 sys_execve .
Y- *filename

$ strace ./helloasm --the-rains-in-spain-stay-mainly-in-the-plains > /dev/null

execve("./helloasm”, ["./helloasm”, "--the-rains-in-spain-stay-mainly"...], [/* 21 vars
*/1) = ©

write(1, "Hello world!\n", 13) = 13

exit_group(42) =7

+++ exited with 42 ++

Let’s say if we told strace to trace helloasm with some arguments. Like this really long one here. You can see now that the second argument to execve passes along our
giant argument string in the helloasm’s argument vector. Notice the three dots after ‘mainly’. By default strace will only show you up to 32 characters of any string that
appears in system call arguments. The three dots let you know there is more that strace is not showing you. Strace will often bombard you with a ton of information about
what a program is doing, so it tries to sumarize things a bit for you as to not be too overwhelming.



const char *const | const char *const
argv[l envpll

const char

59 sys_execve .
YS- *filename

$ strace -s1024 ./helloasm --the-rains-in-spain-stay-mainly-in-the-plains > /dev/null
execve("./helloasm”, ["./helloasm", "--the-rains-in-spain-stay-mainly-in-the-plains"],
[/* 21 vars */]) = ©

write(1, "Hello world!\n", 13) 13

exit_group(42) =?

+++ exited with 42 +++

Sometimes you need to see more than 32 characters of a string to make sense of it. | often like to see several kilobytes of string data when | strace. When you’re reading
data from a socket or a file it’s nice to have more context, and of course more things you can grep for. The -s option to strace lets you set a new limit for displayed string
length. Now that we’ve set it to 1024 we can see the whole string in the argument, and there are no trailing dots to tell you it’s truncated.



const char *const | const char *const
argv[l envpll

const char

59 sys_execve .
YS- *filename

$ strace -s1024 ./helloasm --the-rains-in-spain-stay-mainly-in-the-plains > /dev/null
execve("./helloasm”, ["./helloasm", "--the-rains-in-spain-stay-mainly-in-the-plains"],
[/* 21 vars */]) = ©

write(1, "Hello world!\n", 13) 13

exit_group(42) =?

+++ exited with 42 +++

Finally we come to the third argument of execve, which is an array of strings that represent all the environment variables to send to the new program that you’re
executing. Here strace knows that you probably don’t want to see all of these, so it helpfully sumarizes for you that there are 21 environment variables that are being
passed to helloasm, without actually showing them to you. If you are debugging an environment variable program though you might want to see them all.



const char *const | const char *const
argv[l envpll

const char

59 sys_execve .
YS- *filename

$ strace -s1024 ./helloasm --the-rains-in-spain-stay-mainly-in-the-plains > /dev/null
execve("./helloasm”, ["./helloasm", "--the-rains-in-spain-stay-mainly-in-the-plains"],
[/* 21 vars */]) = ©

write(1, "Hello world!\n", 13) 13

exit_group(42) =?

+++ exited with 42 +++

$ strace -v ./helloasm --the-rains-in-spain-stay-mainly-in-the-plains > /dev/null
execve("./helloasm", ["./helloasm”, "--the-rains-in-spain-stay-mainly"...],
["XDG_SESSION_ID=3", "TERM=screen", "SHELL=/bin/bash", "SSH_CLIENT=192.168.1.195 63291
2"..., "SSH_TTY=/dev/pts/2", "USER=mikeh", "LS_COLORS=rs=0:di=01;34:1n=01;36"...,
"SSH_AUTH_SOCK=/tmp/ssh-tesVWRrz0"..., "MAIL=/var/mail/mikeh", "PATH=/usr/local/sbin:/
usr/local/"..., "QT_QPA_PLATFORMTHEME=appmenu-qt5", "PWD=/home/mikeh",
"LANG=en_US.UTF-8", "SHLVL=1", "HOME=/home/mikeh", "LOGNAME=mikeh",

"SSH _CONNECTION=192.168.1.195 632"..., "LESSOPEN=| /usr/bin/lesspipe %s",
"XDG_RUNTIME_DIR=/run/user/1001", "LESSCLOSE=/usr/bin/lesspipe %s %"..., "_=/usr/bin/
strace"]) = ©

write(1, "Hello world!\n", 13) 13

exit_group(42) =?

+++ exited with 42 +++

If you do for some reason want to see all of them, you can pass strace the -v option, which will tell strace not to do handy summaries of common system call arguments
for you, but actually show you everything.



$ cat helloasm_loop.c
char *buf = "hello world!\n";
void _start(void)
{
int i;
for (i = 9; i < 100000; ++i) {
asm(
"mov $1,%rax;"
"mov $1,%rdi;"
"mov buf,%rsi;"
"mov $13,%rdx;"
"syscall"
)
¥
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall™
)

Ok, let’s modify the helloasm program just a bit so it prints ‘Hello world’ one hundred thousand times before exiting.



$ cat helloasm_loop.c
char *buf = "hello world!\n";
void _start(void)
{
int i;
for (i = 0; i < 100000; ++i) {
asm(
"mov $1,%rax;"
"mov $1,%rdi;"
"mov buf,%rsi;"
"mov $13,%rdx;"
"syscall"
)
}
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall™
)
}

$ gcc -nostdlib -Wall —o helloasm_loop helloasm_loop.c
$ time ./helloasm_loop > /dev/null

real ome.091s
user omo.051s
sys omo.040s

We compile it, and then run it using the time program which gives us some statistics on how long it took. We redirect STDOUT to /dev/null because we don’t want to
measure how long it takes to make 100k writes to the terminal. Now the time command breaks down the time your program spent running into three buckets. The real
time, that is how much wall clock time has elapsed, the user time which is how much time your program spent in userland, and then sys time, which is how long your
program spent in system calls, or inside the OS kernel.



$ cat helloasm_loop.c

char *buf = "hello world!\n";
void _start(void)

{
int i;
for (i = 0; i < 100000; ++i) { «— user
asm(
"mov $1,%rax;" <«————— user
"mov $1,%rdi;" <«——— Uuser
"mov buf,%rsi;" <——— user
"mov $13,%rdx;" «——  user
"syscall"
)
}
asm(
"mov $231,%rax;" +———— user
"mov $42,%rdi;" <———— — user
"syscall™
)
}

$ gcc -nostdlib -Wall —o helloasm_loop helloasm_loop.c
$ time ./helloasm_loop > /dev/null

real ome.091s
user omo.051s
sys omo.040s

This program took under 1 tenth of a second to complete. More than 50% of that time was spent in userland, or non-kernel, non-privileged execution. Incrementing and
testing the loop counter, and moving data into registers are all user CPU cycles. As a side note, some of you might notice some inefficiencies in the write() loop, as we
needlessly load the same values into registers on every loop iteration that are preserved in between system calls, but optimization is another subject.



$ cat helloasm_loop.c
char *buf = "hello world!\n";
void _start(void)
{
int i;
for (i = 0; i < 100000; ++i) {
asm(
"mov $1,%rax;"
"mov $1,%rdi;"
"mov buf,%rsi;"
"mov $13,%rdx;"
"syscall™ +——— sys
)
}
asm(
"mov $231,%rax;"
"mov $42,%rdi;"
"syscall" ——— sys
)
}

$ gcc -nostdlib -Wall —o helloasm_loop helloasm_loop.c
$ time ./helloasm_loop > /dev/null

real ome.091s
user omo.051s
sys 0mo.040s

The syscall executions themselves are what make up the 40ms or so of system time as reported by time.



$ gcc -nostdlib -Wall —o helloasm_loop helloasm loop.c
$ time ./helloasm_loop > /dev/null

real ome.091s
user omo.051s

sys Omo.040s

$ time strace -c ./helloasm_loop > /dev/null

% time seconds usecs/call calls errors syscall
99.99 0.408652 4 100000 write
0.01 0.000026 26 1 execve

100.00 0.408678 100001 total

real om2.967s
user omo.991s
sys om2.751s

Next | wanted to show you the -c option to strace which prints out a nice summray of the system calls that the program makes along with some timing information. This
is handy when you’re trying to get a high-level idea of what the program does without getting too mired in the details.



$ gcc -nostdlib -Wall —o helloasm_loop helloasm loop.c
$ time ./helloasm_loop > /dev/null

real ome.091s
user omo.051s

sys Omo.040s

$ time strace -c ./helloasm_loop > /dev/null

% time seconds usecs/call calls errors syscall
99.99 0.408652 4 100000 write
0.01 0.000026 26 1 execve

100.00 0.408678 100001 total

real om2.967s «————Holy cow, 30x slower!

user Omo.991s

sys om2.751s

| love strace, and it’s extremely handy for debugging systems, but it does come at a high performance cost. You want to be very careful if you’re using it to debug a
production system. You don’t want to attach strace to a running service and then go to lunch.



$ gcc -nostdlib -Wall —o helloasm_loop helloasm loop.c
$ time ./helloasm_loop > /dev/null

real ome.091s
user omo.051s

sys Omo.040s

$ time strace -c ./helloasm_loop > /dev/null

% time seconds usecs/call calls errors syscall
99.99 0.408652 4 100000 write
0.01 0.000026 26 1 execve

100.00 0.408678 100001 total

real om2.967s
user omo.991s
sys Om2.751s

$ strace -c strace -c -o /dev/null ./helloasm _loop > /dev/null

% time seconds usecs/call calls errors syscall
67.12 2.880957 7 400023 ptrace
32.85 1.410078 7 200013 wait4
[snip]

100.00 4.289312 600102 4 total

It’s worth noting, that for fun you can have strace trace strace. This gives you an idea of where strace is spending its time. This also demonstrates the -o option to strace,
which tells it where to write its output instead of STDERR. We use this on the second copy of strace we run so that we only see the trace of strace, and not the trace
output of helloasm. Now helloasm only makes 100k system calls, but tracing those requires 600k syscalls from strace, which is a 6x amplification. The ptrace() and
wait4() system calls are also more expensive than the write() calls being traced. I’'m pretty sure there is a joke to be made here somewhere.



$ gcc -nostdlib -Wall —o helloasm_loop helloasm loop.c
$ time ./helloasm_loop > /dev/null

real ome.091s
user omo.051s

sys Omo.040s

$ time strace -c ./helloasm_loop > /dev/null

% time seconds usecs/call calls errors syscall
99.99 0.408652 4 100000 write
0.01 0.000026 26 1 execve

100.00 0.408678 100001 total

real om2.967s
user omo.991s
sys om2.751s

$ strace -c strace -c -o /dev/null ./helloasm loop > /dev/null

% time seconds usecs/call calls errors syscall
67.12 2.880957 7 400023 ptrace
32.85 1.410078 7 200013 wait4

[snip]

100.00 4.289312 600102 4 total

Haha.



$ file ./helloasm
./helloasm: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
BuildID[shal]=dd79b0166017038503af9ca84026a5c37fedc509, not stripped

So if you run ‘file’ on helloasm, you can see that it’s statically linked. It does not use the C runtime library, or any other library for that matter.



$ file ./helloasm

./helloasm: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
BuildID[shal]=dd79b0166017038503af9ca84026a5c37fedc509, not stripped

$ 1s -1h ./helloasm
-rwxrwxr-x 1 mikeh mikeh 5.3K Nov 10 14:06 ./helloasm

And as far as executables go, it’s pretty small, clocking in at just over 5k. That’s because it doesn’t have any of the boiler plate code inside it that enables dynamically
loading code from external libraries.



$ file ./helloasm
./helloasm: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
BuildID[shal]=dd79b0166017038503af9ca84026a5c37fedc509, not stripped

$ 1s -1h ./helloasm
-rwxrwxr-x 1 mikeh mikeh 5.3K Nov 10 14:06 ./helloasm

$ 1dd ./helloasm
not a dynamic executable

And if you run Idd on it, which shows you which libraries a program requires, you can verify that it needs no libraries. You can take this helloasm binary and run it on any
64-bit linux system out there without worrying about library dependencies or compatibility issues.



$ file ./helloasm
./helloasm: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
BuildID[shal]=dd79b0166017038503af9ca84026a5c37fedc509, not stripped

$ 1s -1h ./helloasm
-rwxrwxr-x 1 mikeh mikeh 5.3K Nov 10 14:06 ./helloasm

$ 1dd ./helloasm
not a dynamic executable

$ file /usr/bin/printf

/usr/bin/printf: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.24,
BuildID[shal]=8b00el1432e9743b6df71197b2d4c668537dael59, stripped

$ 1s -1h /usr/bin/printf
-rwxr-xr-x 1 root root 51K Mar 10 2016 /usr/bin/printf

$ 1dd /usr/bin/printf
linux-vdso.so.1l => (0x00007fff549e0000)
libc.so.6 => /1ib/x86_64-1linux-gnu/libc.so.6 (0x00007fb24f815000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007fb24fbf6000)

Compare this to /usr/bin/printf, which is dynamicaly linked, and around 10x larger in size and links against the standard C library. It’s larger because it contains a bunch of
code that initializes the C runtime library, as well as code that knows how to dynamically run code that lives external libraries.



$ strace -c /usr/bin/printf "Hello world\n" > /dev/null

% time seconds usecs/call calls errors syscall
26.37 0.000082 9 9 mmap
14.15 0.000044 11 4 mprotect
13.50 0.000042 14 3 open
11.58 0.000036 18 2 munmap

9.65 0.000030 10 3 3 access

5.79 0.000018 6 3 brk

5.47 0.000017 17 1 execve

4.50 0.000014 3 5 close

3.86 0.000012 3 4 fstat

1.61 0.000005 5 1 read

1.61 0.000005 5 1 write

0.96 0.000003 3 1 1 ioctl

0.96 0.000003 3 1 arch_prctl
100.00 0.000311 38 4 total

Now if we run the strace system call summary on /usr/bin/printf with a “Hello World” argument, we can see that it makes a 38 system calls which is 35 more than our
helloasm program, which does essentially the same thing. Let’s dig into what some of these system calls are doing. I’ve highlighted 5 system calls (mmap, open, close,
read, and write) for us to look at.



$ strace -y -emmap,open,close,read,write /usr/bin/printf "Hello world\n" > /dev/null
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @) =
Ox714507824000

open("/etc/1ld.so.cache", O RDONLY|O CLOEXEC) = 3

mmap(NULL, 105800, PROT_READ, MAP_PRIVATE, 3</etc/ld.so.cache>, @) = 0x7f4507882000
close(3</etc/1ld.so.cache>) =0

open("/1ib/x86_64-1linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3</1ib/x86_64-1linux-gnu/libc-2.19.s0>, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>
\0\1\0\0\oP \2\0\0\0\0\0"..., 832) = 832

mmap (NULL, 3949248, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3</1ib/x86 64-
linux-gnu/libc-2.19.s0>, @) = @x7f45072bf000

mmap (@x7f4507679000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE,
3</1ib/x86_64-1linux-gnu/libc-2.19.s0>, 0x1baboo) = 0x7f4507679000

mmap (@x7f450767f000, 17088, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,
-1, 9) = Ox7f450767f000

close(3</1ib/x86_64-1linux-gnu/libc-2.19.s0>) = @

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @)
Ox714507889000

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @)
0x7f4507887000

open("/usr/lib/locale/locale-archive", O RDONLY|O CLOEXEC) = 3
mmap(NULL, 7216688, PROT_READ, MAP_PRIVATE, 3</usr/lib/locale/locale-archive>, 0) =
0x7f4506bddoee

close(3</usr/lib/locale/locale-archive>) = ©

mmap (NULL, 4096, PROT_READ|PROT WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, ©) =
Ox714507823000

write(1</dev/null>, "Hello world\n", 12) = 12

close(1</dev/null>) =0

close(2</dev/pts/2>) =0
+++ exited with @ +++

So now we run strace with the -e option, to specify just the 5 system calls we want to trace. The other ones will be ignored.



$ strace -y -emmap,open,close,read,write /usr/bin/printf "Hello world\n" > /dev/null
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP ANONYMOUS, -1, @) =
0x7f45078a4000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @)
0x7f4507889000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ ANONYMOUS, -1, @)
0x7f4507887000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @)

0x7t45078a3000

write(1</dev/null>, "Hello world\n", 12) = 12
close(1</dev/null>) =0
close(2</dev/pts/2>) =0

+++ exited with 0 +++

Let’s look at these mmap calls. The mmap system call is used to map files into memory so your program can read a file like it would a block of memory. The second to
last argument is the file descriptor to map into memory. Notice on these calls to mmap we’re using MMAP_ANONYNOUS and a -1 for the file descriptor. This tells mmap
to simply allocate some memory, and not actually map a file into memory. The second argument is the size of the memory you want mapped. And in these examples
they are 8k and 4k chunks..



$ strace -y -emmap,open,close,read,write /usr/bin/printf "Hello world\n" > /dev/null
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
Ox7f4507824000

open("/etc/1d.so.cache", O RDONLY|O CLOEXEC) = 3

mmap(NULL, 105800, PROT_READ, MAP_PRIVATE, 3</etc/ld.so.cache>, @) = 0x7f4507882000
close(3</etc/1ld.so.cache>) =0

This next block of system calls that we’re looking at opens up the /etc/ld.so.cache file and maps it into memory. One thing to highlight here is that I’'m using the -y option
to strace which tries to map file descriptors to the files they represent. This makes it easier for you to figure out which file descriptor goes with which file. You can see the
open call for Id.so.cache returns 3 (the first file descriptor available after STDIN, STDOUT, and STDERR) but it’s nice to not have to keep track of that. The Id.so.cache file
contains information about where on the filesystem dynamic libraries live. On Linux, the ‘Idconfig’ program updates this file.



$ strace -y -emmap,open,close,read,write /usr/bin/printf "Hello world\n" > /dev/null

open("/1ib/x86_64-1inux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3</1ib/x86_64-1inux-gnu/libc-2.19.s0>, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>
\0\1\0\0\oP \2\0\0\0\0\0"..., 832) = 832

mmap(NULL, 3949248, PROT_READ|PROT EXEC, MAP_PRIVATE |MAP_DENYWRITE, 3</1lib/x86_64-
linux-gnu/libc-2.19.s0>, @) = Ox7f45072bf000

mmap (@x7f4507679000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE,
3</1ib/x86_64-1linux-gnu/libc-2.19.s0>, 0x1baboo) = 0x7f4507679000

mmap (@x7f450767f000, 17088, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP ANONYMOUS,
-1, @) = Ox7f450767f000

close(3</1ib/x86_64-1linux-gnu/libc-2.19.s0>) = @

This next section has the system calls that the dynamic linking code uses to load the libc library into memory. It opens the libary, reads the ELF header and some other

data, and then maps some of the library’s code into memory. You can tell the first mmap is code because of the PROT_EXEC flag which tells mmap that these map data
pages may be executed. The second mmap maps some of the C library’s data into memory, and the final mmap just allocates more anonymous memory.



$ strace -y -emmap,open,close,read,write /usr/bin/printf "Hello world\n" > /dev/null

open("/usr/lib/locale/locale-archive"”, O _RDONLY|O_CLOEXEC) = 3

mmap(NULL, 7216688, PROT_READ, MAP_PRIVATE, 3</usr/lib/locale/locale-archive>, 0) =
Ox7f4506bddoee

close(3</usr/lib/locale/locale-archive>) = @

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

Ox7f45078a3000

write(1</dev/null>, "Hello world\n", 12) = 12
close(1</dev/null>) =0
close(2</dev/pts/2>) =0

+++ exited with 0 +++

This group of system calls mmaps all 7MB of the local-archive file into memory. This file is used by the C runtime library for so it can print locale speicfic strings for things

like the days of the week. Some distributions of linux have locale-archive files that are hundreds of megabytes in size, which would be accounted for in your programs
‘RSS’ or resident set size, which led to some confusion.



$ strace -y -emmap,open,close,read,write /usr/bin/printf "Hello world\n" > /dev/null
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @) =
Ox7f4507824000

open("/etc/1ld.so.cache", O RDONLY|O CLOEXEC) = 3

mmap (NULL, 105800, PROT_READ, MAP_PRIVATE, 3</etc/ld.so.cache>, 0) = 0x7f450788a000
close(3</etc/1ld.so.cache>) =0

open("/1ib/x86_64-1inux-gnu/libc.so.6", O RDONLY|O CLOEXEC) = 3
read(3</1ib/x86_64-1linux-gnu/libc-2.19.s0>, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>
\0\1\0\0\oP \2\0\0\0\0\0"..., 832) = 832

mmap(NULL, 3949248, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3</lib/x86 64-
linux-gnu/libc-2.19.s0>, @) = @x7f45072bf000

mmap (Ox7f4507679000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE,
3</1ib/x86_64-1linux-gnu/libc-2.19.s0>, 0x1babod) = 0x7f4507679000

mmap (Ox7f450767f000, 17088, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,
-1, 9) = Ox7f450767f000

close(3</1ib/x86_64-1linux-gnu/libc-2.19.s0>) = @

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
Ox714507889000

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, ©)
Ox714507887000

open("/usr/lib/locale/locale-archive", O RDONLY|O CLOEXEC) = 3
mmap(NULL, 7216688, PROT_READ, MAP_PRIVATE, 3</usr/lib/locale/locale-archive>, @) =
ox7f4506bddooe

close(3</usr/lib/locale/locale-archive>) = @

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, ©) =
0x714507823000

write(1</dev/null>, "Hello world\n", 12) = 12

close(1</dev/null>) =0

close(2</dev/pts/2>) =0

+++ exited with @ +++

And finally we have the actual system calls that do the work we asked the program to do. We write “Hello World” to our STDOUT, which you can see thanks to the -y
option has been mapped to /dev/null, then we clean up and close our remaining open file descriptors.



The World’s Most Boring WordPress Site

crush

Just another WordPress site

Hello world!
November 11, 2016 Such hello, much world. Wow. Hello world.

Leave a comment

RECENT POSTS

« Hello world!

Next I’'m going to show you how to use strace to trace a running program, like a webserver. Here | have the world’s most boring word press site, which I’ve set up for this
talk.



The World’s Most Boring WordPress Site

crush

Just another WordPress site

Hello world!
November 11, 2016 Such hello, much world. Wow. Hello world.

Leave a comment

RECENT POSTS

« Hello world!

# curl -s http://localhost/wordpress/ | grep Wow
<p>Such hello, much world. Wow. Hello world.</p>

For this example we need to do our work logged into one of the hosts that serves up this website, and we need to be root. So if we run curl against localhost/wordpress
you can see that we’re talking to the webserver and we get the front page of the wordpress site.



The World’s Most Boring WordPress Site

crush

Just another WordPress site

Hello world!
November 11, 2016 Such hello, much world. Wow. Hello world.

Leave a comment

RECENT POSTS

« Hello world!

# curl -s http://localhost/wordpress/ | grep Wow
<p>Such hello, much world. Wow. Hello world.</p>

# ps auxw | grep nginx..worker | grep -v grep
www-data 13711 ©.0 0.0 86524 2716 ?
www-data 13712 ©.0 0.0 861890 1788 ?
www-data 13713 ©.0 ©.0 86180 1788 ?
www-data 13714 ©.0 0.0 861890 1788 ?

19:36 ©0:00 nginx: worker process
19:36 ©0:00 nginx: worker process
19:36 ©0:00 nginx: worker process
19:36 0:00 nginx: worker process

n nunnmn

If we run ps and grep for nginx workers we can see that for this site we have the default four workers configured, each of them running as a stand alone process.



The World’s Most Boring WordPress Site

crush

Just another WordPress site

Hello world!
November 11, 2016 Such hello, much world. Wow. Hello world.

Leave a comment

RECENT POSTS

« Hello world!

# curl -s http://localhost/wordpress/ | grep Wow
<p>Such hello, much world. Wow. Hello world.</p>

# ps auxw | grep nginx..worker | grep -v grep

www-data 13711 ©.0 0.0 86524 2716 ? S 19:36 0:00 nginx: worker process
www-data 13712 ©.0 0.0 86180 1788 ? S 19:36 0:00 nginx: worker process
www-data 13713 ©.0 0.0 86180 1788 ? S 19:36 0:00 nginx: worker process
www-data 13714 ©.0 0.0 86180 1788 ? S 19:36 0:00 nginx: worker process

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

We can use pgrep in conjunction with sed in order to get the pids of these worker processes. | add the -p to each one of these pids using sed, but I'll get to that later.



Debug %V
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 —o/tmp/nginx -r —ff -p13711 -p13712 -p13713 -pl3714

Here is my strace command line that we’re going to use to figure out what is happening with the nginx workers.



Debug %V
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 —o/tmp/nginx -r —ff -p13711 -p13712 -p13713 -pl3714

f

kill -TERM after 5 sec

This first part of the command uses the UNIX timeout program, which will send a TERM signal to the program you ask it to run after 5 seconds. We don’t want to run
strace for too long, remember the 30x performance impact is can have.



Debug %V
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 —o/tmp/nginx -r —ff -p13711 -p13712 -p13713 -pl3714

f

kill -TERM after 5 sec
show names for descriptors

This next argument we talked about earlier, it shows filenames associated with descriptors, which is pretty handy.



Debug %V
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 —o/tmp/nginx -r —ff -p13711 -p13712 -p13713 -pl3714

f f

kill -TERM after 5 sec 128 byte strings
show names for descriptors

This lets us look at 128 bytes of strings that are used in system calls, this gives us a bit of context so we can figure out what’s going on.



Debug %N
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 —o/tmp/nginx -r —ff -p13711 -p13712 -p13713 -pl3714

f f

kill -TERM after 5 sec 128 byte strings
show names for descriptors write output files here

The -0 option we discussed earlier, it tells strace where to write its output files. We don’t want them going to STDERR in this case.



Debug %V
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 —o/tmp/nginx -r —ff -p13711 -p13712 -p13713 -pl3714

f f f

kill -TERM after 5 sec 128 byte strings relative timestamps
show names for descriptors write output files here

The -r option is new. This tells strace to generate relative timestamps for each system call, so you can get an idea of how long each system call took. This is helpful for
figuring out if certain system calls are really slowing down our application.



Debug %V
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 —o/tmp/nginx -r —ff -p13711 -p13712 -p13713 -pl3714

kill -TERM after 5 sec /1 28 byte strings relative timestamps
show names for descriptors write output files here  append pid to output file

The ‘ff’ option tells strace to append the pid of the traced process to the output file. So for example if we’re tracing worker process 13711, the filename will be /tmp/
nginx.13711.



Debug %N
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 —o/tmp/nginx -r —ff -p13711 -p13712 -p13713 -pl3714

kill -TERM after 5 sec /1 28 byte strings I relative timesta‘nk pids to trace

show names for descriptors write output files here  append pid to output file

The final arguments here we geneated using our pgrep/sed magic. This tells strace that we want to trace the process ids of the four nginx worker processes.



Debug %V
The World’s Most Bormg ordPress Site

# echo $(pgrep -f nginx..worker | sed 's/~/-p/')
-p13711 -p13712 -p13713 -pl13714

# timeout 5 strace -y -s128 -o/tmp/nginx -r -ff -p13711 -p13712 -p13713 -pl3714

kill -TERM after 5 sec /1 28 byte strings I relative timesta‘nk pids to trace

show names for descriptors write output files here  append pid to output file

Process 13711 attached

Process 13712 attached

Process 13713 attached

Process 13714 attached

Process 13711 detached

Process 13712 detached

Process 13713 detached

Process 13714 detached

# 1s -1 /tmp/nginx*

-rw-r--r-- 1 root root 20516 Nov 10 21:21 /tmp/nginx.13711
-rw-r--r-- 1 root root 708 Nov 10 21:21 /tmp/nginx.13712
-rw-r--r-- 1 root root 708 Nov 10 21:21 /tmp/nginx.13713
-rw-r--r-- 1 root root 708 Nov 10 21:21 /tmp/nginx.13714

No we run strace, and we see some output telling us that strace has attached its hooks into the processes, and after 5 seconds it will detach from these processes after
the ‘timeout’ program sends it a SIGTERM. If we look in /tmp after strace finishes, we can see that strace wrote its output where we expected it to. Only one of these files
has a lot of information in it, pid 13711 is the one that must have processed a request during the 5 seconds we were tracing.



0.000056 epoll wait(8<anon_inode:[eventpoll]>, {{EPOLLIN|EPOLLOUT, {u32=1564295568,
u64=139652425925008}}}, 512, 7297) = 1

0.300373 recvfrom(11l, "GET /wordpress/ HTTP/1.1\r\nHost: crush.lan\r\nConnection: keep-
alive\r\nPragma: no-cache\r\nCache-Control: no-cache\r\nUpgrade-Insecure-R"..., 1024,
@, NULL, NULL) = 431

Let’s have a look at some of the system calls that the nginx worker made. The first epoll_wait call is the worker waiting around for something to happen. It doesn’t wait
long though, 300ms later it learns that one of its file descriptors (#11) is ready to be read from. It reads a 431 byte request from a browser that requests an HTTP GET on
the /wordpress/ location.



0.000056 epoll wait(8<anon_inode:[eventpoll]>, {{EPOLLIN|EPOLLOUT, {u32=1564295568,
u64=139652425925008}}}, 512, 7297) = 1

0.300373 recvfrom(11l, "GET /wordpress/ HTTP/1.1\r\nHost: crush.lan\r\nConnection: keep-
alive\r\nPragma: no-cache\r\nCache-Control: no-cache\r\nUpgrade-Insecure-R"..., 1024,
@, NULL, NULL) = 431

0.000305 stat("/var/www/html/wordpress/index.php", {st_mode=S_IFREG|0644,
st_size=418, ...}) = ©

It runs the stat() system call to get some information about the index.php script.



0.000056 epoll wait(8<anon_inode:[eventpoll]>, {{EPOLLIN|EPOLLOUT, {u32=1564295568,
u64=139652425925008}}}, 512, 7297) = 1

0.300373 recvfrom(11l, "GET /wordpress/ HTTP/1.1\r\nHost: crush.lan\r\nConnection: keep-
alive\r\nPragma: no-cache\r\nCache-Control: no-cache\r\nUpgrade-Insecure-R"..., 1024,
@, NULL, NULL) = 431

0.000305 stat("/var/www/html/wordpress/index.php", {st_mode=S_IFREG|0644,
st_size=418, ...}) = ©

0.000214 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 12

It then does something somewhat unxpected, it creates a new socket, and gets back file descriptor #12.



0.000056 epoll wait(8<anon_inode:[eventpoll]>, {{EPOLLIN|EPOLLOUT, {u32=1564295568,
u64=139652425925008}}}, 512, 7297) = 1

0.300373 recvfrom(11l, "GET /wordpress/ HTTP/1.1\r\nHost: crush.lan\r\nConnection: keep-
alive\r\nPragma: no-cache\r\nCache-Control: no-cache\r\nUpgrade-Insecure-R"..., 1024,
@, NULL, NULL) = 431

0.000305 stat("/var/www/html/wordpress/index.php", {st_mode=S_IFREG|0644,
st_size=418, ...}) = ©
0.000214 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 12

0.000161 connect(12, {sa_family=AF_INET, sin_port=htons(9000),
sin_addr=inet_addr("127.0.0.1")}, 16) = -1 EINPROGRESS

After it gets the handle back from the socket, it calls connect() to connect that socket to port 9000 on localhost. Notice those curly braces in the strace output. Strace

knows that the second argument to connect is a pointer to a sockaddr data structure. Strace is being extremely helpful here, by deferencing that pointer and breaking out
the various structure members (like sa_family, sa_port, etc) and showing them to you.



0.000056 epoll wait(8<anon_inode:[eventpoll]>, {{EPOLLIN|EPOLLOUT, {u32=1564295568,
u64=139652425925008}}}, 512, 7297) = 1
0.300373 recvfrom(11l, "GET /wordpress/ HTTP/1.1\r\nHost: crush.lan\r\nConnection: keep-

alive\r\nPragma: no-cache\r\nCache-Control: no-cache\r\nUpgrade-Insecure-R"..., 1024,
0, NULL, NULL) = 431

0.000305 stat("/var/www/html/wordpress/index.php", {st_mode=S_IFREG|0644,
st_size=418, ...}) = ©

0.000214 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 12

0.000161 connect(12, {sa_family=AF_INET, sin_port=htons(9000),
sin_addr=inet_addr("127.0.0.1")}, 16) = -1 EINPROGRESS

0.038520 recvfrom(12, "\1\6\0\1\37\370\0\0X-Powered-By: PHP/5.5.9-1ubuntu4.20\r

\nContent-Type: text/html; charset=UTF-8\r\nLink: <http://crush/wordpress/?
rest_route=/"..., 4096, 0, NULL, NULL) = 4096

The webserver reads 4k of information from this socket, with the recvfrom() system call from our socket on file descriptor #12 call that judging from the ‘Powered-By’
header appear to be from PHP.



0.000056 epoll wait(8<anon_inode:[eventpoll]>, {{EPOLLIN|EPOLLOUT, {u32=1564295568,
u64=139652425925008}}}, 512, 7297) = 1

0.300373 recvfrom(11l, "GET /wordpress/ HTTP/1.1\r\nHost: crush.lan\r\nConnection: keep-
alive\r\nPragma: no-cache\r\nCache-Control: no-cache\r\nUpgrade-Insecure-R"..., 1024,
@, NULL, NULL) = 431

0.000305 stat("/var/www/html/wordpress/index.php", {st_mode=S_IFREG|0644,
st_size=418, ...}) = ©

0.000214 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 12
0.000161 connect(12, {sa_family=AF_INET, sin_port=htons(9000),
sin_addr=inet_addr("127.0.0.1")}, 16) = -1 EINPROGRESS

0.038520 recvfrom(12, "\1\6\0\1\37\370\0\0X-Powered-By: PHP/5.5.9-1ubuntu4.20\r
\nContent-Type: text/html; charset=UTF-8\r\nLink: <http://crush/wordpress/?
rest_route=/"..., 4096, 0, NULL, NULL) = 4096

0.000133 close(12<socket:[713910]>) = ©

0.000211 writev(1ll<socket:[713795]>, [{"HTTP/1.1 200 OK\r\nServer: nginx/1.4.6
(Ubuntu)\r\nDate: Fri, 11 Nov 2016 05:21:18 GMT\r\nConten

t-Type: text/html; charset=UTF-8\r\nTran"..., 311}, {"ec2\r\n", 5},
{"\37\213\10\0\0\0\0\0\0\3", 10}, {"\265Zyo\333\310\331\377\333\376\24c\6
\265\244\206\207 (\371\224E\31\251\223\305\273\305n\33\304\t
\212\"\16\26\0249\22\351\360*I\331\326\353\370\273\367\367\314\f/\371\314&]d-
\36\317<\363\334\327p\272\363\366\237g\37\377\375\376\35\v\3128\232m0\351\207En
\262t4\236\30\237\3165\346EnQ82\222\32\227\205F\20\334\365g\333[\32
3\230\227.\363\0027/x\351h\237>\376b\34\341\265"..., 3768}, {"\r\n@\r\n\r\n",
7}1, 5) = 4101

A bit later is closes the socket, and then writes an HTTP response back to the web browser. What’s happening here is that nginx is farming out the request for index.php
to something listening on port 9000, and then sending what it gets back from that port back to the web browser. It’s essentially acting like a middle man.



# 1sof -i :9000

COMMAND  PID USER FD  TYPE DEVICE SIZE/OFF NODE NAME

php5-fpm 1071 root 7u IPv4 10048 0t@ TCP localhost:9000 (LISTEN)
php5-fpm 1104 www-data ou IPv4 10048 0t0 TCP localhost:9000 (LISTEN)
php5-fpm 1105 www-data ou IPv4 10048 0t0 TCP localhost:9000 (LISTEN)

Sure enough, that middle man listening on port 9000 is the php5-fpm worker. It listens for requests on port 9000 to execute PHP code, runs the code, and then hands hte
results back to the requestor.



# 1sof -i :9000

COMMAND  PID USER FD  TYPE DEVICE SIZE/OFF NODE NAME

php5-fpm 1071 root 7u IPv4 10048 0t@ TCP localhost:9000 (LISTEN)
php5-fpm 1104 www-data ou IPv4 10048 0t0 TCP localhost:9000 (LISTEN)
php5-fpm 1105 www-data ou IPv4 10048 0t0 TCP localhost:9000 (LISTEN)

# timeout 5 strace -y -s4096 -o /tmp/php -ff $(pgrep php | sed ’s/~/-p/') &

Process 1071 attached
Process 1104 attached
Process 1105 attached

# curl -s http://localhost/wordpress/ | grep Wow
<p>Such hello, much world. Wow. Hello world.</p>

Process 1071 detached
Process 1104 detached
Process 1105 detached

# 1s -1 /tmp/php*

-rw-r--r-- 1 root root 1645 Nov 11 12:44 /tmp/php.10671
-rw-r--r-- 1 root root 26 Nov 11 12:44 /tmp/php.1104
-rw-r--r-- 1 root root 70811 Nov 11 12:44 /tmp/php.1105

So now we run strace against php5-fpm instead of nginx, and while it’s running we run curl to generate a request to nginx, which in turn will generate a request to PHP.

Based on the file size, it looks like the php5-fpm worker on pid 1105 handled the request. Let’s see if we can determine using strace where PHP grabs that snarky string
from. ‘Such hello, much world. Wow.” Notice | now ask strace to show me 4k worth of strings.



write(5<socket:[12916]>, "O\O\O\O\3SELECT wp_posts.* FROM wp_posts WHERE ID IN (4)", 52) = 52
read(5<socket:[12916]>, "\1\0\0\1\0273\0\0\2\3def\twordpress\10wp_posts\10wp_posts\2ID\2ID\f?
\0\24\0\0\0\10#B\0\0\OE\0\0\3\3def\twordpress\10wp_posts\10wp_posts\vpost_author\vpost_author
\f?\0\24\0\0\0\10)@\0\0\0A\0\0\4\3def\twordpress\10wp_posts\10wp_posts\tpost_date\tpost_date
\f?\0\23\0\0\0\f\201@\0\0\0I\0\0\5\3def\twordpress\10wp_posts\10wp_posts\rpost_date_gmt
\rpost_date_gmt\f?\0\23\0\0\0\f\201\0\0\0\0G\0\0\6\3def\twordpress\10wp_posts\10wp_posts
\fpost_content\fpost_content\f\340\0\377\377\377\377\374\21\20\0\0\0C\0\0\7\3def\twordpress
\10wp_posts\10wp_posts\npost_title\npost_ title\f\340\0\374\377\3\0\374\21\20\0\0\0G
\0\0\10\3def\twordpress\10wp_posts\10wp_posts\fpost_excerpt\fpost_excerpt\f
\340\0\374\377\3\0\374\21\20\0\0\0E\0\0\t\3def\twordpress\10wp_posts\10wp_posts\vpost_status
\vpost_status\f\340\0P\0\0\0\375\1@\0\0\0K\0\0\n\3def\twordpress\10wp_posts\10wp_posts
\16comment_status\16comment_status\f\340\0P\0\0\0\375\1\0\0\0\0E\0\0\Vv\3def\twordpress
\10wp_posts\10wp_posts\vping status\vping_status\f\340\0P\0\0\0\375\1\0\0\0\0I\0\0\f\3def
\twordpress\10wp_posts\10wp_posts\rpost_password\rpost_password\f\340\0P\0\0\0\375\1\0\0\0\0A
\@\o\r\3def\twordpress\10wp_posts\10wp_posts\tpost_name\tpost_name\f\340\0 \3\0\0\375\t@
\0\0\0=\0\0\16\3def\twordpress\10wp_posts\10wp_posts\7to_ping\7to_ping\f
\340\0\374\377\3\0\374\21\20\0\0\0; \0\0\17\3def\twordpress\10wp_posts\1Owp_posts\6pinged
\6pinged\f\340\0\374\377\3\0\374\21\20\0\0\0I\0\0\20\3def\twordpress\10wp_posts\10wp_posts
\rpost_modified\rpost_modified\f?\0\23\0\0\0\1\201\0\0\0\0Q\0\0\21\3def\twordpress\10wp_posts
\10wp_posts\21lpost_modified_gmt\21lpost_modified_gmt\f?\0\23\0\0\0\f\201\0\0\0\0Y\0\0\22\3def
\twordpress\10wp_posts\10wp_posts\25post_content_filtered\25post_content_filtered\f
\340\0\377\377\377\377\374\21\20\0\0\0E\0\0\23\3def\twordpress\10wp_posts\10Owp_posts
\vpost_parent\vpost_parent\f?\0\24\0\0\0\10)@\0\0\0007\0\0\24\3def\twordpress\10wp_posts
\10wp_posts\4guid\4guid\f\340\0\374\3\0\0\375\1\0\0\0\0C\0\0\25\3def\twordpress\10wp_posts
\10wp_posts\nmenu_order\nmenu_order\f?\0\v\0\0\0\3\1\0\0\0\0A\0\0\26\3def\twordpress
\10wp_posts\10wp_posts\tpost_type\tpost_type\f\340\0P\0\0\0\375\t@\0\0\0K\0\0\27\3def
\twordpress\10wp_posts\10wp_posts\16post_mime_type\l6post_mime_type\f
\340\0\220\1\0\0\375\1\0\0\0\0I\0\0\30\3def\twordpress\10wp_posts\10Owp_posts\rcomment_count
\rcomment_count\f?
\0\24\0\0\0\10\1\0\0\0\0\5\0\0\31\376\0\0\2\0\354\0\0\32\0014\0011\0232016-11-11
03:19:11\0232016-11-11 ©3:19:11=Such hello, much world. Wow. Hello world.\r\n\r\n&nbsp;\r\n\r
\n&nbsp;\fHello world!\@\7publish\4open\dopen\@\rhello-world-2\0\0\0232016-11-11
03:56:33\0232016-11-11 03:56:33\0\0010\33http://crush/wordpress/?p=4\0010\4post
\0\0010\5\0\0\33\376\0\0\2\0", 16384) = 1940

So by grepping for the string in the strace output | found where it comes from — a read from a socket. If we look at the write to the same socket just above the read, you
can see php sending out a MySQL query to file descriptor #5 and then receiving the results, by reading from the file descriptor. The string is kept in the MySQL wp_posts
table.



# grep “socket /tmp/php.1104 -Al0

socket (PF_LOCAL, SOCK_STREAM, @) =5
fcntl(5<socket:[12916]>, F_SETFL, O_RDONLY) = ©
fcntl(5<socket:[12916]>, F_GETFL) = Ox2 (flags O_RDWR)

connect(5, {sa_family=AF_LOCAL, sun_path="/var/run/mysqld/mysqld.sock"}, 110) = @

read(5<socket:[12916]>, "[\0\@\@\n5.5.53-0ubuntud.14.04.1\0000\0\0\0|4, |0U<]
\0\377\367\10\2\0\17\200\25\0\0\0\0\0\0\0\0\0\0%s7X6A "' >Aipw\Bmysql_native_password\@", 16384)
= 95

write(5<socket:[12916]>, "R\0\0\1\5\242\16\0\0\0\0@
\10\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0wpuser\0\24:~\226\4\313-Q\2136\373\3420
\234.\305\303R\16\262\333mysql_native_password\@", 86) = 86

read(5<socket:[12916]>, "\7\0\0\2\0\0\0\2\0\0\0", 16384) = 11

So in the last slide we saw that file descriptor #5 was the socket used for the MySQL connection. Let’s trace where that connection was made. | grepped the strace
output file for the socket system call and found it right away. That connect call connects socket 5 to the mysqgld local UNIX domain socket, which tells us the DB is on the
same host as the webserver. You can also see it read the MySQL banner (which includes the version number) from the socket, and it then writes the username and an
encoded password to the socket to authenticate.



